
 02/09/2010 - 1 - 

Bluprint Architecture 

Overview 
Bluprint adopts a simple three-layer architecture summarised in the following 
diagram.  It illustrates the packages within the application, their dependency 
on one another and on third-party packages such the log4j.  In keeping with 
a layered architecture, each layer is dependent upon the layer below, but not 
vice-versa. 

This diagram and those shown subsequently are all taken from the UML 
MagicDraw model used to generate the Bluprint application. 

 
Figure 1 - Bluprint Architecture 

The classes and packages within each layer, by convention, conform to a 
different broad set of responsibilities.  In this architecture these are as 
follows: 

• Presentation.  This layer is responsible for supporting the presentation of 
the application, or user-interface, to the end user.  The user-interface in 



 02/09/2010 - 2 - 

Bluprint is a simple command line interface that is implemented by the 
single class Bluprint in the org.bluprint.presentation package.  
Although the Presentation layer only contains a single class, it is possible 
for this to be replaced by a more sophisticated interface such as one 
implemented in Swing. 

• Application.  The Application layer is responsible for implementing the 
logic of the application in response to user requests forwarded from the 
Presentation Layer.  It has a single entry point implemented in the class 
BluprintController within the org.bluprint.app package. 

• Model.  This layer contains the classes that support the underlying 
abstractions manipulated by the application.  The package 
org.bluprint.model.java contains a set of classes that model java 
programs. 

Presentation Layer 

 
Figure 2 - org.bluprint.presentation 

The Presentation layer has a single class called Bluprint that contains the 
entry point to the application via the main() function.  This invokes the 
execute() function that parses the command line parameters and calls either 
the generateJavaFromModel() method or the mergeJavaWithModel() method 
within the BluprintController class, in the layer below, depending upon the 
number of parameters identified in the command line. 



 02/09/2010 - 3 - 

Application Layer 

 
Figure 3 - org.bluprint.app 

The BluprintController class exposes two methods for use by the 
Presentation layer, one for generating Java source code from an XMI UML 
model and the other for merging pre-existing Java source code with source 
generated from an XMI UML model.  These are generateJavaFromModel() 
and mergeJavaWithModel() respectively. 

generateJavaFromModel() 

The generateJavaFromModel() method performs the following logical steps: 

1. Read, and parse, an XMI UML model from the specified file creating an 
in-memory representation of the model. 

2. Invoke the code generator using the previously created in-memory 
representation of the model to create the Java source code in the 
specified output directory. 

mergeJavaWithModel() 

In the mergeJavaWithModel() method the following logical steps are 
performed: 

1. Read, and parse, an XMI UML model from the specified file creating an 
in-memory representation of the model. 

2. Read, and parse, the Java source from the specified directory and sub-
directories creating another in-memory representation of the code. 

3. Merge both in-memory representations with one another. 



 02/09/2010 - 4 - 

4. Invoke the code generator using the merged in-memory representation to 
create the Java source code in the specified output directory. 

org.bluprint.app.model 

 
Figure 4 - org.bluprint.app.model 

The org.bluprint.app.model package defines an interface for accessing and 
abstracting an externally maintained object model such an XMI model 
accessed via EMF UML2.  Within the EMFUML2ModelDataSource class the 
readModel() and writeModel() methods implement the ModelDataSource 
interface to read and write org.eclipse.uml2 Models. 



 02/09/2010 - 5 - 

Modelling Third‐party Classes and Libraries 

As an aside third party classes, data types and APIs are maintained in the 
model, so for instance the classes in the org.eclipe.uml2 package are 
modelled.  The diagram below shows the interfaces defined in this package. 

We model these classes so that we can reference them as parameters in 
method definitions or include them in our model diagrams. 

 
Figure 5 - org.eclipse.uml2 

Bluprint recognises a custom stereotype called <<nogen>> which can be 
applied to classes, interfaces and packages within this model.  The 
stereotype is used to indicate to the code generator within Bluprint that no 
code should be generated for that class, interface or package. 

org.bluprint.app.generator 

 
Figure 6 - org.bluprint.app.generator 

This package defines a simple interface for the code generator with the intent 
that multiple different implementations could be provided.  In Bluprint a 
single Java code generator is implemented, but it is the ambition of the 
project that other alternative generators could be created such as for C#. 

org.bluprint.app.generator.java 

 



 02/09/2010 - 6 - 

Figure 7 - org.bluprint.app.generator.java 

This package contains the implementation of a Java code generator that 
takes an org.bluprint.model.JavaModel.  It iterates over the model 
generating Java code using the org.antlr.stringtemplate third party library.  
This is a simple template library for writing formatted strings. 

org.bluprint.app.mapper 

 
Figure 8 - org.bluprint.app.mapper 

The org.bluprint.app.mapper package contains classes for mapping from 
various external model sources to a org.bluprint.model.JavaModel, 
Bluprint’s abstract representation of a Java object model. 

Two mapping classes are represented in this package, 
UML2ModelJavaModelMapper and JavaSourceJavaModelMapper.  The former is 
used to map from an org.eclipse.uml2.Model to a JavaModel and the latter is 
used to map Java source code to a JavaModel. 

The UML2ModelJavaModelMapper class is dependent upon the Antlr 
StringTemplate library as it is used for creating Java style comments from the 
comments contained in the EMF UML2 model as the Java code generator in 
this version of Bluprint is not very sophisticated.  Comments in the JavaModel 
are maintained in a literal representation, usually to reflect the comments 
identified when parsing the Java source code.  In a future version of Bluprint 
this should be refined so that comments in the JavaModel are stored in a Java 
source code independent format.  This will be necessary when in a future 
release we abstract JavaModel to be a generic language independent model. 



 02/09/2010 - 7 - 

org.bluprint.app.mapper.adapter 

 
Figure 9 - org.bluprint.app.mapper.adapter 

The interfaces in this package are used for abstracting access to an EMF 
UML2 object model.  Interfaces are provided for the major constructs usually 
found in a model such as package, class, interface and operation.  The intent 
of the design was to implement Bluprint against this adapter interface to 
simplify and isolate the code for iterating over and accessing elements of an 
EMF UML2 model.  Notice that each interface implements a wrap() method 
which takes an underlying EMF UML2 class as a parameter.  Each interface 
then provides a simple set of getter methods for accessing properties 
associated with the wrapped EMF UML2 class. 

org.bluprint.app.mapper.adapter.uml2 

 
Figure 10 - org.bluprint.app.mapper.adapter.uml2 

The above classes provide the concrete implementation for accessing an 
EMF UML2 model. 



 02/09/2010 - 8 - 

org.bluprint.app.parser.java 

 
Figure 11 - org.bluprint.app.parser.java 

Antlr is an open source parser generator and has been used to create a Java 
1.5 parser for use by Bluprint.  The output of the generator is represented in 
the model as shown above. 

org.bluprint.app.util 

 
Figure 12 - org.bluprint.app.util 

The above are utility classes manipulating URIs. 

org.bluprint.app.util.java 

 
Figure 13 - org.bluprint.app.util.java 

The JavaUtils class contains a helper function for determining if a string is a 
Java reserved word. 



 02/09/2010 - 9 - 

org.bluprint.app.util.uml2 

 

 

Figure 14 - org.bluprint.app.util.uml2 

This package defines a set of interfaces for iterating over elements in an EMF 
UML2 model together with their implementation. 

Model Layer 

org.bluprint.model.java 

 
Figure 15 - org.bluprint.model.java 

This package contains a simplified model for representing Java classes and 
interfaces.  These classes will be created from an EMF model or from parsing 
Java source code.  These classes are also capable of supporting the merge 
and diff operations between instances. 



 02/09/2010 - 10 - 

 
Figure 16 - org.bluprint.model.java – model 

The elements of a Java program are held within a JavaModel, which contains 
the root of all classes, interfaces and packages within a Java program. 

 
Figure 17 - org.bluprint.model.java – arrays 

As the comment in the model explains, arrays have to be represented as 
classes ending with the suffix “[]”, so that they can be specified as 
arguments and the return types for class methods.  Bluprint, will not generate 
code for these classes. 


